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INTRODUCTION

Near-field acoustic holography (NAH) has proven to be an useful tool for the identification of sound fields generated by unknown vibro-acoustic sources. The underlying
idea behind this method is to extrapolate the seeked acoustic quantities based on a set of localised near-field measurements and an assumed wave behaviour model, using
an appropriate reconstruction algorithm [1]. We propose an original acoustic far-field prediction procedure, based on autonomous 3D pressure measurements, carried out
with a robotic arm, and on a numerical solution derived from the boundary elements method (BEM).
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Given a triangular and regular mesh of 0f2, and using P, Lagrange surfacic ele- All results were obtained using a 10 s lot%sweep signal sampled at 96 kH z, Welch's method
ments, (3) can be stated and solved as matrix equations, provided that actual infor- and a 12" octave smoothing
mation (e.g. measurements) about p is given at each triangle centroid. — Flawed positioning accuracy of the robot
Equation (2) can then easily be used to reconstruct and predict the studied sound Using the complete calibration procedure presented in [4], the positioning accu-
field p at any point of 2, with an [y error decreasing as fast as the squared mesh | | racy of the robotic arm was increased to +2 mm, hence allowing measurements to
resolution A [3] i.e. as fast as the number of eventual number of measurements. be performed each centimeter with no risk of overlapping.
kBot‘h resolution and prediction steps were implemented using FREEFEM BEM library [5] )L — Sound source repetability and stationarity )
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