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INTRODUCTION
Near-field acoustic holography (NAH) has proven to be an useful tool for the identification of sound fields generated by unknown vibro-acoustic sources. The underlying

idea behind this method is to extrapolate the seeked acoustic quantities based on a set of localised near-field measurements and an assumed wave behaviour model, using
an appropriate reconstruction algorithm [1]. We propose an original acoustic far-field prediction procedure, based on autonomous 3D pressure measurements, carried out
with a robotic arm, and on a numerical solution derived from the boundary elements method (BEM).
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PERSPECTIVES
ÕÕ Investigate high frequency prediction errors;

ÕÕ Implement and evaluate new reconstruction al-
gorithms, such as spacial Fourier transform based
methods, equivalent elementary sources decom-
position methods, or BEM with P1 elements;

ÕÕ Improve and further automate the measurement
process : investigate robot induced noise cancel-
ing solutions, increase robustness and versatility.

THE BOUNDARY ELEMENTS METHOD (BEM)
PROBLEM MODELING, INTEGRAL OPERATOR AND VARITATIONAL

FORMULATION

∂Ω∞

n∞

∂Ω
n

O

Ω

x

y

Let ∂Ω define a closed surface confining
an acoustic source O, such that the sationnary
Helmholtz wave equation with the Sommerfeld ra-
diation condition stand for the seeked acoustic
pressure field p :

∆p(x) + k2p(x) = 0 in Ω

p(x) = p0(x) on ∂Ω

lim
∂Ω∞→∞

(
∂

∂|x| − ik
)
p(x) = 0

(1)

Where k ∈ R is the acoustic wavenumber.

Introducing Helmholtz equation free-field Green function, G(x, y), [2] shows that
the boundary trace of p can be written using the following integral operator :

∃ u : ∂Ω→ C, ∀ x ∈ ∂Ω, p(x) =
1

2
u(x)+

∫
∂Ω

(
∂G(x, y)

∂n(y)
− ikG(x, y)

)
u(y)dσ(y) (2)

Hence, the strong formulation (1) is equivalent to find p satisfying the weak for-
mulation :

∀ v : ∂Ω→ C,
∫
∂Ω

(
p0(x)− 1

2
u(x)

)
v(y′)dσ(y′) =∫∫

∂Ω×∂Ω

(
∂G(x, y)

∂n(y)
− ikG(x, y)

)
u(y)v(y′)dσ(yy′) (3)

NUMERICAL RESOLUTION AND CONVERGENCE PROPETIES

Given a triangular and regular mesh of ∂Ω, and using P0 Lagrange surfacic ele-
ments, (3) can be stated and solved as matrix equations, provided that actual infor-
mation (e.g. measurements) about p is given at each triangle centroid.

Equation (2) can then easily be used to reconstruct and predict the studied sound
field p at any point of Ω, with an l2 error decreasing as fast as the squared mesh
resolution h [3] i.e. as fast as the number of eventual number of measurements.

Both resolution and prediction steps were implemented using FREEFEM BEM library [5]

ROBOTIZED MEASUREMENTS
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VALIDITY LIMITS OF THE MEASUREMENTS

ÕÕ Reflections and scattering caused by the robot
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The actual impact of the robot
was assessed in 6 control config-
urations, in which measurements
with and without the robot were
performed.

The results obtained showed
that measurements between 50 Hz
and 1000 Hz remain below a 1 dB
difference compared to the robot-
less reference.

All results were obtained using a 10 s logsweep signal sampled at 96 kHz, Welch’s method
and a 12th octave smoothing

ÕÕ Flawed positioning accuracy of the robot

Using the complete calibration procedure presented in [4], the positioning accu-
racy of the robotic arm was increased to ±2 mm, hence allowing measurements to
be performed each centimeter with no risk of overlapping.

ÕÕ Sound source repetability and stationarity

EXPERIMENTS AND RESULTS

ACOUSTIC PRESSURE MEASUREMENTS
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372 measurements carried out with a JBL flip 2 on a spherical mesh of
diameter 35 cm and resolution 5 cm (total duration : ±2 h)

PREDICTION RESULTS
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Numerical prediction at 1000Hz
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Sampled prediction results obtained on 20 measurements located on a circular mesh of radius 25 cm at z = 0 (left)
and detailed data for φ = 0 (right)


